An Empirical Model of Piezoelectric Stick-slip Actuation of the Kleindiek Mm3a Micromanipulator
نویسندگان
چکیده
The need for precise micro/nano-positioning has arisen in many fields of research and technology. Piezoelectric stick-slip actuators are widely used where precise positioning over a wide range of motion is required. Controlling manipulators that utilize piezoelectric stick-slip actuators is not a trivial task, as these actuators have a discrete stepping nature, with a step size that is influenced by a variety of factors such as actuator loading, temperature, and humidity. Absence of integrated joint sensors in manipulators that use piezoelectric stick-slip actuators (which is typical), as well as difficulty in using vision feedback for closed-loop control, has led to development of open-loop modeling methods to estimate the step size of the actuators. Prior work has failed to characterize and quantify the effects of various parameters on the displacement of such actuators to a degree as to be easily utilized in the control of an actual manipulator. In this thesis, we propose an empirically derived predictive open-loop model for the step size of the prismatic and rotary piezoelectric-stick-slip-actuated joints of a Kleindiek MM3A micromanipulator, based on static and inertial loads due to the mass of the manipulator’s links as well as loads applied to the end-effector. The effects of various parameters on the step size of each joint are quantified and characterized. The results obtained are then fit into a model based on nonlinear regression via joint-specific parameters. Calibration routines are developed to quickly determine the joint-specific parameters for use in the derived predictive step-size model. Using the model obtained, we can predict the step size with an accuracy of 20% (100 nm) for the prismatic joint of the manipulator, and 2% (1μrad) for the rotary joints of the manipulator.
منابع مشابه
An Empirical Study of Static Loading on Piezoelectric Stick-Slip Actuators of Micromanipulators
Piezoelectric stick-slip actuators have become the foundation of modern micromanipulation. Due to difficulty in closed-loop control with manipulators that use piezoelectric stick-slip actuators, methods for open-loop control with a human in the loop have been developed. The utility of such methods depends directly on the accuracy of the open-loop models of the manipulator. Prior research has sh...
متن کاملDahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation
This paper presents a new control scheme for the hysteresis compensation and precise positioning of a piezoelectrically actuated micromanipulator. The scheme employs an inverse Dahl model-based feedforward in combination with a repetitive proportionalintegral-derivative feedback control algorithm along with an antiwindup strategy. The dynamic model of the system with Dahl hysteresis is establis...
متن کاملAn ARX-Based PID-Sliding Mode Control on Velocity Tracking Control of a Stick-Slip Piezoelectric-Driven Actuator
Piezoelectric-driven stick slip actuators have been drawn more and more attention in the nanopositioning application due to the high accuracy and theoretical unlimited displacement. However, the hysteresis of piezoelectric actuator (PEA) and the nonlinear friction force between the endeffector and the stage make control of piezoelectric-driven stick slip actuator challenge. This paper presents ...
متن کاملFIB/SEM technology in NEMS/MEMS fabrication and investigation
FEI Helios NanoLab 600i microscope with Kleindiek MM3A-EM micromanipulators, controlled by microscope PC connected to Keithley 2400 Source Meter, has been used in our experiments. Due to limited space only several examples of FIB/SEM processes that have been conducted are presented here. They proof the great advantage of this technology in modifying single structures in short time. Streszczenie...
متن کاملA 3 DOF Piezohydraulic Parallel Micromanipulator
The paper presents a new parallel micromanipulator that is composed of three piezohydraulic actuation systems. The basic elements of the actuation system are a piezoelectric actuator, a bellows and hydraulic oil. The use of the flexible bellows results in a new type of parallel structure, where the joints are integrated into actuator links. The joint-free tripod-like micromanipulator is control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013